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Abstract We present a class of solutions to the~discrete Painleve-I1 equation for particular 
values of its par am et em.^ It is shown that these solutions can be expressed in terms of Casorati 
determinants whose envies are discrete Airy functions. The analogy befween the r function for 
the discrete PII and that of the disaete To& molecule equation is pointed out. 

1. Introduction ~ ~ 

The  six Painlev6 transcendents are of very common occurcence ic the theory of integrable 
systems [I]. Nonlinear evolution equations, integrable through inverse scattering techniques, 

 were shown to possess one-dimensional (similarity) reductions that are just Painlev6 
equations. This feature of.integable PDEs eventually evolved into an integrablity criterion 
.[2], the Painlev6 property being intimately linked . .  to integrablity. Discrete integrable systems 
have recently become $e, focus of interest and an active' domain of research. 'The study 
of the partition function in a ZD model of quantum gravity [3,4] led to the discovery of 
the discrete analogue of the Painlev.51 (PI) equation. It was followed closely afterwards by 
the derivation d of the discrete Pn in both a quantum gravity setting [5] 'and as a similurib 
reduction of a lattice version of the mKdV equation [6]. The remaining discrete Painlev6 
equations (dPm to dPv) were derived [7] using a more direct approach reminiscent of 
the PainlevWambier [SI method for the continuous ones. This~method, derived in [9] 
and dubbed singularity confinement, is the discrete equivalent of the Painlev6 approach 
and offers an algorithmic criterion for discrete integrability. One important result of these 
inimtigations is that the~form of the discrete Painlev6 equations is not unique: there exist 
several discrete analogues for each continuous Painlev& equations. 

The continuous Painlev6 equations were shown to be transcendental in the sense that 
their general solution cannot be expressed in terms of elementary functions [IO]. In fact, 
this solution can be obtained only through inverse scattering methods. However, in some 
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particular cases (for special values of parameters) the solution to the Painlev6 equations can 
be expressed in terms of special functions [ll-131. For example, Pn 

wrx - 2w3 + 2xw +CY = 0 (1) 

has a solution for 01 = -(2N + 1) 

= (log:) x 

where rN is given by an N x N Wronskian of the Airy function 

2N-2 

(&)N-lAi (&)NAi ... (&) Ai 

Note that Ai is the Airy function, satisfying 

From the close analogy that is known to exist between the continuous and discrete Painlev6 
equations, one would also expect special function-like solutions to exist for the discrete 
Painlev6 equations, and this is indeed the case. As was shown in [14], dPn has elementary 
solutions that can be expressed in terms of the discrete equivalent to the Airy function. In 
[I41 only the simplest of these solutions was derived explicitly. The method for obtaining 
the higher ones was based on the existence of an iuto-Backlund transform for dPn, but it 
is not clear how one can obtain the general expression for these special function solutions 
following this method. In this paper we intend to present the answer to this problem. Using 
Hirota's bilinear formalism, we show that these particular solutions to dF'n can be written 
as Casorati determinants whose entries are the discrete analogues of the Airy function. 

2. Special solutions of dP11 

We consider dPI1 

(ern + B)wn + Y 
1 - w; W"+l + w.-1 = (5) 

where a, @ and y are arbitrary constants. First, let us seek a simple solution of (5). It is 
easily shown that if w, satisfies the Rimti-type equation 

w,, - (an + b)  
I + w n  %+l = 
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then it gives a solution of (5) with the constraint y = - c r / 2 .  In fact, we have from (6) 

917 

w, + (an - a ~ +  b) 
w"-l = 

1 - wn 

Adding (6) and (7). we obtain 

(2an - a  + 2b + 2)w. - a  
W"+l + w"-l = 1 - w ;  

which is a special case of (5). Now we put 

(7) 

and substitute (9) into (6) and, assuming that the numerators and the denominators of both 
sides of (6) are equal, respectively, we have 

Eliminating F,, from (loa) and (lob), we see that G, satisfies 

G.+z - ~G.+I + G. = -(as + b)G, (11) 

which is considered to be the discrete version of (4) and has a solution given.by the discrete 
analogue of the Airy function. By means of the solution, w, is~expressed as 

(12) 

It is possible to construct a series of solutions expressed by the discrete analogue of the 
Airy function. We here give the result, leaving the derivation until the next section. We 
consider the t function 

G ~ + I  w n -  - - - - I , . '  
GI 

An+z = 2&+1 - (p + q ) & .  

We can show that r; satisfies the following bilinear forms 

tn+2 - "-1 n+2 - t" tn+l  
N+1 N - 1  - ' N  'N  N N  

7"+* n+l - 2 r"+l 7n+Z + ( p n  + 4) 7; 'n+3 - 0 N+l 'N  N+l  N +I N - 
and 
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7; = 

Applying the dependent variable transformation as 

A" ... & + z N - ~  2An+ZN-3 - (p (n  + 2 N  -4) f 4 ) & + ~ ~ - 4  
A,+I . . . A n + ~ - 3  ~ A , + z N - z  - ( p ( n  + 2N - 3) + ~ ) A , + z N - ~  

. 

&+N-I ... An+3~-5 2&+3N-4 - (P(n 3N - 5 )  4 ) A n + 3 ~ - 5  

we obtain a special case of dPIr 

(19) 
(2pn + (2N - 1)p + 2 q )  wn - (2N + 1)p 

1 - w;: %+I + %-I = 

We note that (8) and its solution is recovered by putting p = a ,  q = b + 1, and N = 0. 
We also note that (19) reduces to (1) with CL = -(2N + 1 )  if we choose p = --E , q = 1, 
w, = EW and n = X / E ,  and take the limit -E + 1. 

3 

3. Derivation of the results 

In this section we show that (13) really gives the solution of (19) through the dependent 
variable transformation (18). 

First, let us prove that the r function (13) satisfies the bilinear forms (15H17). For this 
purpose we show that (15)-(17) reduce to the Jacobi identity or the Plucker relations. Before 
doing so, we give a brief explanation of the Jacobi identity. Let D be some determinanr 
and D('.) be the determinant with the ith row and the j th  column removed from D .  Then 
the J d b i  identity is given by 
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where B,?, k = 0, 1, . . . , are given by 

Similarly, we have 

Let us introduce the notation 

For example, i; and (pn  + q)r; are rewritten as 

7; = 10,2,. ..,2N -21 = 10.2, ..., 2N -2,@1 

- - 2N-I lo',1,3 ,..., 2N-31 

n - 2N-1 ( p n  + q)xN - Il,2', 3,5 , .  . . ,2N - 31 = 2N-'l l ,  2', 3 , .  . . ,2N,- 3.41 

respectively. Now consider the following identity of the (2N + 2) x (2N + 2) determinant 

(25) I 1-1 0';  1 ... 2 N - 5 ~ :  0 / 2 N - 3  4 
-1 GJi 0 : 1 ... 2 N - 5  i 2 N - 3  4 

Applying the Laplace expansion on the right-hand side of (25). we obtain 

0 = ~.....'.....__.__~-.-.' L .... ~ _.__ , 

O =  I - 1,d, 1, ..., 2N -51 x 11 ,..., 2 N - 5 , 2 N  -3,41 

- 1  - 1,1, ..., 2N -5,2N -3 )  x IO', 1 ,... 2N -5,eI  
. 

+ I  - 1,1, . . . ,2N-5,41 X 10',1, ..., 2N-5 ,2N  -31 (26) 

which is nothing but the special case of the Plucker relations. Equation (26)'is rewritten by 
using (21) and (23) as 

(27) 
n--2 "+I 0 = ( p ( n  - 2) + q )  iN rN-l - 2 q-~' 

which is essentially yhe same as (16). 

+ r; r;:', 

We next prove that (17) holds. We have the following equation similar to (21) and (23) 

(p(n+2N)+q)t;+'=-12 ,..., 2N-2,2N+21+2N-112',3 ,..., 2N - 3 , Z N f I I .  

(28) 
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Then the right-hand side of (17) is rewritten as 

12, ..., ZN -2 ,ZN+21  x l1,3,. . . ,2N - 11 
-2N-1j2',3, ..., 2N -3 ,2N+ 11 x 11,3 ,..., 2N - 11 
+ 2N-' l l ,  Z', 3, . . . , 2 N  - 5 ,2N - 31 X 13.5,. . .2N - 1,2N + 11. 

From the identity 

11 2, 3 ... 2 N - 3  ~ 0 I 2 N - 1  2 N + 1  

1 2 ' :  0 j 3 ... 2 N - 3  j 2 N - 1  2 N + 1  
o =  _ _ _ . _ '  __...___... ~ .___ ' L . . . :  I ___.._..__.___ 

= ( l , 2 ' , 3  ,..., 2N -31 x 13,5, ... 2 N  -5,2N - 1 , 2 N +  11 

- 11.3, . , .2N - 3 , 2 N  - 11 x 12',3, .. . ,2N - 3 , Z N f  11 

+ 11,3 ,..., 2N - 3 , 2 N +  11 X 12',3 ,... 2N - 3 , 2 N  - 11 

the second and third terms of (29) yield 

-2N-'11,3, ..., 2N - 3 , 2 N + l I  X 12',3, ..., 2N - 3 , 2 N -  11 

= - 11.3, ..., 2N - 3 , Z N f l I  X 12,4, ..., 2N -2,ZNI.  

Hence, equation (17) is reduced to 

12,4, ..., 2N - 2 ,2N +21 x 11,3, ..., 2N - 3 , 2 N  - 11 

- 11,3, _.., 2N - 3,2N + 11 X 12,4, ..., 2N -2,2NI 

= 11.3, ..., 2 N -  1 , 2 N $  11 X 12,4, ..., 2N -21 

which is again nothing but the Jacobi identity (20). In fact, taking D = 
11,3 ,..., 2 N - l , 2 N + l I ,  i = 1, j = N +  1,  k ==Nand  1 = N + l ,  we see that 
(20) is the same as (32). This completes the proof that the t function (13) satisfies the 
bilinear forms (15)-(17). 

Finally, let us derive (19) from the bilinear forms (15)-(17). We introduce the dependent 
variables by 

Then (15H17) are rewritten as 

U;-' = U;?, (1 - *) (34) 

un+l N - 2u;+' + ( p n  + q ) u i v ;  = O~ (35) 

(36) n+I - n+Z uN - uN-, (-M + 2 N )  + q)  + (pn  + d u i )  
respectively. Eliminating U N  and from (34)-(36) and introducing w. defined by 

we obtain (19). 
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4. Concluding remarks 

In this paper. we have discussed the solution of dP11, (for semi-integer values of the 
parameter y / u )  and shown that it can be expressed as a Casorati determinant of the discrete 
Airy function. The most remarkable result is the structure of the r function (13). The 
subscript of A, does not vary in the same way in the horizontal and vertical directions: it 
increases by one with each new row and by WO with each new column. This is a feature 
which has not been encountered before in other discrete integrable systems. 

Before concluding let us point out the  relation^ with the Toda molecule equation. It is 
known in general that the r function of Pm satisfies the Toda molecule equation 1111 

whose solution is expressed as 

where f is an arbitrary function. It is clear that (3) is a special case of (39). Hence, we may 
expect that the r function of dPu satisfies the discrete Toda molecule equation proposed by 
Huota 1151 

(&a) 2 A%;. ti - (A..) = r i + l t ~ ~ ~  N = 0,1,2,. . . 

or 

"f2t; - (r;;") 2 = ti+l p + Z  N - l  "N N = 0,1,~2, .  . .~ (40b) 

whose solution is given by 

for arbitrary fn,  where A is a forward difference operator in n defined by 

A t N  n - r"+l  - - tN.  n 

However, because of the diffeience in the structure of the t function mentioned above, that 
of dPu does not satisfy the discrete Toda molecule equation (40) itself. In fact, equation 
(15) may be regarded as an alternative of (40), which is rewritten as 

(AA'ri) . r i  - (A";) . (A'rk) = t&~$?; (43) 
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where A' is given by 

I n - ="+2 - A zN - r i .  

Indeed, equation (43) also reduces to the ordinary Toda molecule equation (38) in the 
continuum limit. 

It is expected that the other discrete Painlev6 equations also have solutions expressed 
by Casorati determinants whose entries are the discrete special functions. In particular for 
dPm it was shown in 1161 that solutions in terms of discrete Bessel functions exist for some 
values of the parameters, while for dPw the particular solutions are in terms of discrete 
parabolic cylinder (Weber-Hermite) functions 1171. In a forthcoming paper we intend to 
present Casorati determinant-type solutions for these discrete Painlevc! equations. One more 
interesting point concerns the existence of rational solutions. Both continuous and discrete 
Painlev6 equations possess such solutions, and in principle it should be possible to obtain 
general expressions for them in terms of Casorati determinants. 
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